The Gene Encoding Mitochondrial Succinate Dehydrogenase Subunit 4 Has Been Successfully Transferred to the Nuclear Genome in Pea, while Leaving an Original Sequence as a Pseudogene in the Mitochondrial Genome

Nakao KUBO1,2 and Koh-ichi KADOWAKI1 *

1Genetic Diversity Department, National Institute of Agrobiological Sciences, Tsukuba 305–8602, Japan
2Faculty of Horticulture, Chiba University, Matsudo 271–8510, Japan
*Corresponding author E–mail address: kadowaki@affrc.go.jp

Received 31 August 2001; accepted 11 September 2001

Abstract

A sequence homologous to a gene encoding succinate dehydrogenase subunit 4 (sdh4) was found in pea mitochondrial genome but non–functional. A functional sdh4 gene was isolated from pea nuclear genome, suggesting gene transfer from the mitochondrion to the nucleus during evolution. As compared with mitochondrial sdh4 genes, the pea nuclear sdh4 gene has an extension in its N–terminal region, suggesting encoding a protein targeting signal to mitochondria. There are five introns and six exons in the pea nuclear sdh4 gene. Sequence homology to mitochondrial sdh4 is observed in the exon 6 but not in the other five exons, suggesting mitochondrial sequence was integrated downstream of the five exons. Comparison of nuclear sdh4 genomic sequences from pea, Arabidopsis and rice suggests that the number and location of introns are different among the three. Therefore, sdh4 genes may have evolved in the nuclei independently among plant species.

Accession numbers: AB070890–AB070892

Keywords: gene transfer, mitochondria, pea, Pisum sativum, sdh4, succinate dehydrogenase.

Abbreviation

sdh4, succinate dehydrogenase subunit 4 gene.

According to the endosymbiont hypothesis, mitochondria are a resultant of endosymbiosis during evolution. It is known that over 90% of genetic information has already been transferred from the mitochondrion to the nucleus in mammals and insects, etc. In contrast, the genome size of plant mitochondria is much larger than those of animals and dozens of additional genetic information are found in plant mitochondrial genome by the complete nucleotide sequence analysis in liverwort, Arabidopsis and sugar beet (Oda et al., 1992; Unseld et al., 1997; Kubo et al., 2000). This evidence may imply that plant mitochondrial genome is keeping rather ancient form as compared with animal mitochondrial genome, thus it will be a good model to know the evolutionary process of genetic information transfer. Gene transfer event from the mitochondrion to the nucleus has been firstly found by Nugent and Palmer (1991) and examples of gene transfer events have been reported to date by several researchers including us (Kadowaki et al., 1996; Kubo et al., 1999 and references therein). In the present study, we report another case of gene transfer event in pea (Pisum sativum, L. var. Alaska).

The complex II of respiratory chain is involved in catalysis of the oxidation of succinate to fumarate and composed of four subunits, namely SDH1–SDH4 (see, Siedow, 1995 for a review). All of the subunits are encoded by nuclear genes in human and yeast, whereas genes for SDH3 and SDH4 (sdh3 and sdh4) have been found in the mitochondrial genomes of some lower plants, a protist (Burger et al., 1996) and several higher plants (Giegé et al., 1998; Adams et al., 2001). Recently, multiple losses and transfers to the nucleus of sdh3 and sdh4 genes have been reported in angiosperm (Adams et al., 2001). The above results suggest that gene
transfer event of the \textit{sdh4} gene from the mitochondrion to the nucleus is an on-going process in plants. Therefore, diversity of \textit{sdh4} gene content among plant species will give a clue to understand the process of gene transfer event.

In higher plants, \textit{sdh4} genes have been found downstream of \textit{cox3} gene in the mitochondrial genome of \textit{Arabidopsis} and \textit{Oenothera} by Giegé et al. (1998). They also suggested presence of the \textit{sdh4}-like sequence in the mitochondrial genomes of other dicotyledonous plants. In addition, partial nucleotide sequences of \textit{sdh4}-homologues have also been reported in the mitochondrial genomes of several higher plants (Adams et al., 2001). In order to know its gene organization in pea, DNA gel blot analysis was conducted by using the \textit{Arabidopsis} mitochondrial \textit{sdh4} sequence as a probe. Mitochondrial and nuclear DNAs were isolated from young seedlings of pea as described in Umbeck and Gengenbach (1983) and Rivin et al. (1982), respectively, and used for hybridization analysis. A signal was detected in pea mitochondrial DNA (Fig. 1, left panel), suggesting presence of an \textit{sdh4}-homologous sequence in pea mitochondrial genome. The \textit{sdh4}-homologous sequence was isolated from a pea mitochondrial DNA library with the \textit{Arabidopsis} \textit{sdh4} probe and the nucleotide sequence was determined. Nucleotide sequence alignment shows that the pea mitochondrial sequence shows 87% sequence homology to the \textit{Arabidopsis} \textit{sdh4} sequence but lacks a C-terminal portion of evolutionarily conserved region (Figs. 2 and 4). It is unlikely that the open reading frame of the pea \textit{sdh4} gene is divided by some other machinery, such as a group II intron or trans-splicing because there was no such structure in the downstream region. These results strongly suggest that pea mitochondrial \textit{sdh4} sequence can not encode functional SDH4. The process of disruption of the original \textit{sdh4} gene in pea seems to be different form that of the \textit{Arabidopsis} \textit{sdh4} whose open reading frame is interrupted by an internal stop codon (Giegé et al., 1998).

To examine the gene transfer event, DNA gel blot analysis of pea nuclear DNA was conducted. A signal was detected in the nuclear DNA with each of two restriction enzymes (Fig. 1, right panel). This signal appears to be derived from nuclear DNA, not from mitochondrial DNA, because the
size of each signal in the nuclear DNA is different from that in the mitochondrial DNA. It is likely that the sdh4-homologous sequence is present as a single copy in pea nuclear genome by the DNA gel blot analysis. Perhaps, an additional copy showing low homology to sdh4 might be present because a week signal (15 kb) was also detected in the nuclear DNA (Fig. 1, lane S in right panel). This result suggests presence of another sdh4-homologous sequence in pea nucleus. In order to isolate the nuclear sdh4 sequence, a pea nuclear cDNA library was constructed from poly(A)+ RNA and screened by using the Arabidopsis sdh4 probe. Nucleotide sequence of the largest cDNA clone is shown in Fig. 3B. It contains an open reading frame capable of encoding 223 amino acids and the predicted amino acid sequence shows significant homology to known SDH4 peptides (Fig. 4). Thus we concluded that this sequence encodes mitochondrial SDH4. As compared with mitochondrial-encoded sdh4 genes, the pea nuclear sdh4 gene has an extension of 130 amino acids in its N-terminal region (Fig. 4). This extension is likely to include a targeting signal for protein import into mitochondria because it has typical amino acid composition of mitochondrial targeting signals: many hydroxylated and positively charged amino acids; and less negatively charged amino acids. In addition, this region has the

![Figure 3](https://example.com/fig3.png)

Fig. 3 (A) Schematic representation of pea nuclear sdh4 gene. Open and dotted boxes represent mitochondrial SDH4-coding region and an N-terminal extension, respectively. Introns are shown by bent lines. (B) cDNA and deduced amino acid sequences of pea nuclear sdh4 gene. Translational stop codons are represented by asterisks. Intron sites are indicated by filled triangles. The locations of primers used for PCR analysis to determine the genomic sequence are given by horizontal arrows. A region homologous to mitochondrial SDH4 protein is shown by a bent arrow. The cDNA and genomic sequences of pea nuclear sdh4 have been deposited in the EMBL/GenBank/DDBJ databases under the Accession nos. AB070891 and AB070892, respectively.
potential of forming an amphiphilic $\alpha$-helix structure which suggested to be important for protein import into mitochondria (data not shown). The origin of the N-terminal extension is not clear because database search analyses and plaque hybridization experiments could not find out any other known genes.

In order to examine the history of pea genomic $sdh4$ gene in evolution, PCR was conducted with primers P1–P4 (locations of primers are shown in Fig. 3B) and pea nuclear DNA as a template. With primer pair P3–P4, products of the same size with the cDNA sequence were amplified. In contrast, larger products were obtained with primer pairs P1–P2 and P1–P4. Nucleotide sequence analysis of the amplified products shows presence of five introns and six exons in the pea nuclear $sdh4$ gene (Fig. 3). The intron sequences vary, in length, from 100 nt to 2080 nt (the genomic sequence is not shown here but available in the EMBL/GenBank/DDBJ databases under the Accession no. AB003266) and liverwort mitochondrion (Oda et al., 1992). Amino acid residues identical to pea nuclear SDH4 are indicated by black boxes. Intron sites in pea and rice nuclear $sdh4$ genes are indicated by filled and open triangles, respectively. Arabidopsis nuclear $sdh4$ gene has no intron sequence.

Fig. 4 Amino acid sequence alignment of SDH4. Deduced amino acid sequence of pea nuclear $sdh4$ gene (this study) is aligned with that encoded in pea mitochondrial (this study), Arabidopsis mitochondrion and nucleus (Giegé et al., 1998; Adams et al., 2001), rice nucleus (DDBJ Accession no. AP003266) and liverwort mitochondrion (Oda et al., 1992). Amino acid residues identical to pea nuclear SDH4 are indicated by black boxes. Intron sites in pea and rice nuclear $sdh4$ genes are indicated by filled and open triangles, respectively.

Acknowledgements

We thank Prof. K. Harada for valuable discussion. This work was partly supported by a grant from the Ministry of Agriculture, Forestry and Fisheries to K.K. N.K. is a recipient of Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

References


